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Dynamical beats of short pulses in waveguide QED
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We study weak pulse propagation through near-resonant collective media. The timescales of the pulse and the
lifetime of the media are comparable. The transmitted pulse develops temporal oscillations, known as dynamical
beats. We use a collection of 133Cs atoms randomly captured by a nanofiber-based optical lattice. An effective
macroscopic model derived from a microscopic many-atom input-output theory reproduces the observations. The
results deepen our understanding of single-photon pulse propagation, crucial for many waveguide QED-based
quantum information protocols.
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I. INTRODUCTION

Light pulses traveling through waveguides make high-
speed communication possible and present us with potential
routes for processing quantum information. Understanding
the effects of light pulses propagating through ensembles of
resonant emitters in a one-dimensional waveguide becomes
crucial for many quantum information applications [1–4],
especially for light pulses whose time duration is compa-
rable to the lifetime of the atomic qubits. Such study has
a long history in physics and engineering. Early work by
Sommerfeld [5] and Brillouin [6,7] showed the existence of
what is now known as precursors [8–11], observed when
the rise time of a pulse is shorter than the lifetime of the
excited state of the resonant media [12–15], whose quan-
tum properties have been recently studied with Rydberg
atoms [16,17]. Pulses propagating through a resonant me-
dia also show amplitude oscillations, as observed by Lynch
et al. on Mössbauer spectroscopy [18] and explained with
a quantum theory by Harris [19]. These oscillations are
called dynamical beats (DBs) [20], most noticeably appear-
ing in Mössbauer experiments [21] but also present in the
optical regime [22–24]. DBs are affected by the collective
atomic response of the media, superradiantly speeding up
the initial decay [25–28] and subradiantly slowing down
the long-time behavior. Novel quantum information proto-
cols in the context of waveguide quantum electrodynamics
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(QED) [29] are based on pulse propagation [1–4], bringing
a renewed interest in these phenomena [30].

Here, we experimentally and theoretically study the evolu-
tion of a weak light pulse confined in a waveguide crossing an
ordered array of atoms, as depicted by Fig. 1(a). In particular,
we focus on the limit of single-photon resonant pulses with
a temporal width shorter than the atomic lifetime, a relevant
regime for quantum information protocols in waveguide QED.
We observe a sharp division in the resulting temporal behav-
ior: at short times, while the pulse is still in the medium, there
is a buildup of a macroscopic polarization (exciting atoms
into a superposition). After that, the transmitted pulse is deter-
mined by the radiative decay of the macroscopic polarization
(or collective atomic radiation) [30–33]. A transmission dip,
or zero, distinctively separates both regimes, denoting the
moment when the induced polarization amplitude matches the
electric field amplitude of the input pulse but with the opposite
phase.

In the single-photon regime, the dynamics of the pulse is
accurately described by means of a single parameter (the op-
tical depth), greatly simplifying the theoretical description of
the problem. While the severe pulse modification challenges
practical implementations of quantum information protocols,
it also presents an opportunity for shaping the amplitude and
phase of propagating pulses in waveguide QED platforms.

II. EXPERIMENTAL SETUP

Hundreds of cesium (Cs) atoms are optically confined
around the surface of an optical nanofiber [34]. The nanofiber
is 500 nm in diameter over a length of 5 mm fabricated from
a standard optical fiber by the flame brushing technique [35]
[see Figs. 1(a) and 1(b)]. The fiber sustains a single spatial
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FIG. 1. (a) The atomic array is trapped in the evanescent field of
an optical lattice near the nanofiber surface. The lattice constant d
is half the wavelength of the trapping light. The temporal shape of a
Gaussian input pulse (green) gets modified after propagating through
an array of trapped atoms (red). (b) Schematic of the apparatus
includes dichroic mirrors (DMs), volume Bragg gratings (VBGs),
and half wave plates (λ/2) with the pulses coming from the left
detecting them with a single-photon counter module (SPCM) on
the right. The pulses are produced by acousto- and electro-optical
modulators (AOM, EOM) controlled by an electronic pulse from an
arbitrary wave generator (AWG) that triggers the time correlator for
single-photon counters (TCSPCs) for further data processing.

electromagnetic mode. We use a two-color optical dipole trap
[36], operating at (red) 935 nm and (blue) 686.3 and 686.5 nm,
to reduce the Stark shift and longitudinal circular polarization
on the trapped atoms [37,38], close to the magic wavelengths
[39]. The calculated coupling of a trapped atom into the
waveguide mode is �1D ≈ 0.03�′, with �′ the emission rate
into free space, for the operating transition 6S1/2, F = 4 →
6P3/2, F = 5. A magneto-optical trap captures Cs atoms from
the residual gas in the vacuum chamber, which then fall into
the dipole traps around the nanofiber. The lifetime of trapped
atoms in the nanofiber optical lattice is about 8 ms, which
is used to extract the value of the optical depth (OD), by
different delay times, after loading into the nanofiber dipole
trap. Although the OD (measured by absorption spectroscopy)
is reproducible, the exact location of the atoms within the
periodic lattice is not. The influence of this disorder has been
thoroughly studied in Ref. [30] and it is not an issue in the
present work.

A combination of a fiber EOM (Ixblue, NIR-MX800-LN-
10-00-P-P-FA-FA) and AOM (AA Opto Electronic MT110-
B50A1-IR) allows for shaping the pulses, changing their
characteristic rise and fall times. We limit the length of the
pulses to less than 1/�′, the natural atomic lifetime. An elec-
tronic reference triggers the optical pulse and sets the zero
time. A data acquisition card (Siminics FT1040) time stamps
the electronic pulses from the detectors (Excelitas SPCM-
AQRH-14-F) for further data processing. The power of the
excitation, which is small compared to the saturation intensity,
corresponds to an average of ≈0.4 photons per pulse, guaran-
teeing less than two photons 94% of the time. For a given OD,
we repeat the process of preparation, excitation, and measure-
ment 5000 times to obtain good statistics. The corresponding
input and transmitted pulses are shown in Fig. 2.

FIG. 2. Time dependence of the transmitted intensity (red) for
a 10 ns FWHM pulse propagating in a medium of OD = 11.6,
normalized by the peak intensity of the pulse without atoms (gray),
in logarithmic scale. The solid green line shows the results for the
multimode model with an ideal single Lorenzian absorption as in-
put. The solid purple line shows the results of the model using a
broadened absorption modeled by a sum of Lorentzians. The inset
shows the measured absorption (gray dots) and the result of the sum
of Lorenzians (solid gray line). Note the logarithmic vertical scale.
In all plots, �′/2π = 5.2 MHz.

III. THEORETICAL MODEL

Generically, the transmitted field reads

E (t ) = 1

2π

∫ ∞

−∞
T (ω)E0(ω)e−iωt dω, (1)

where E0(ω) is the Fourier transform of the input pulse, and
T (ω) is the transmission coefficient of the waveguide in the
presence of atoms.

We obtain the transmission coefficient via an input-output
theory that enables us to write the (linear) response of the
system in terms of N collective atomic modes, where N is
the atom number [40,41]. These modes, which can be either
super- or subradiant, emerge from the atom-atom interactions
mediated by the waveguide. They are found by diagonalizing
the single-excitation sector of the non-Hermitian Hamiltonian,

H1D = −i
h̄�1D

2

N∑
i, j=1

eikd|i− j|σ̂ i
egσ̂

j
ge. (2)

Here, k is the guided-mode wave vector, d is the interatomic
separation, and σ̂

j
ge = |g j〉〈e j | is the coherence operator for

atom j.
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Plugging the steady-state solution of the Heisenberg-
Langevin equations for the atomic coherences into an
input-output equation for a monochromatic electromagnetic
field, the transmission coefficient is found to be [40]

T (ω) = 1 − i�1D

2

N∑
ξ=1

ηξ

ω − ω0 + i�′/2 − λξ

. (3)

Here, ω0 is the atomic resonance frequency and {λξ } are
the (single-excitation) eigenvalues of H1D, which encode the
frequency shifts and decay rates of the collective modes. The
parameter ηξ = ∑N

n,m=1 vξ,nvξ,me−ikd (n−m) denotes the spatial
overlap of the external field with the eigenvector vξ . The
expression for the transmission coefficient arising when atoms
are in the “mirror configuration” (for which kd is an integer
multiple of π ) is quite simple. In this configuration, there is
only a single superradiant mode and the Heisenberg-Langevin
equations are identical to those of a collection of atoms in-
teracting with a single-cavity mode in the low-intensity and
bad-cavity limits of the cavity QED work of Carmichael et al.
[42] (see Appendix A).

The output field is the sum of the input field, E0(t ), and the
scattered field by the different collective modes. For an input
pulse with peak intensity I0 and a Gaussian temporal envelope
of variance σ 2, i.e., f (t ) = e−t2/σ 2

/
√

2πσ 2, the transmitted
intensity reads (see Appendix A)

Id (t )

I0
=

∣∣∣∣ f (t )e−i	t − �1D

4

N∑
ξ=1

aξ e−(iλξ +�′/2)t erfc

(
bξ − t√

2σ

)∣∣∣∣
2

,

(4)

where 	 = ωp − ω0 is the detuning between the central fre-
quency of the pulse and the atomic resonance frequency,
erfc(·) is the complementary error function, and aξ and bξ are
expressions given in Appendix A.

The first zero in Fig. 2 appears when the two terms in
Eq. (4) cancel each other. In the limit of large optical depth
(i.e., for OD ≡ 2N�1D/�′ 
 1), the first zero appears at short
times compared to the natural lifetime 1/�′. In the crude limit
of considering only the most superradiant mode (with decay
rate ∼N�1D), a Taylor expansion of the above expression
allows us to find the time for the first zero as �′τzero � 4/OD.
The subsequent zeros, i.e., the dynamical beats, arise from
interference between different collective atomic modes. How-
ever, the phenomenology cannot be simply attributed to a few
dominant modes; it is truly a multimode feature.

In the large-atom limit, the transmission coefficient in
Eq. (3) converges to that of a continuous medium [30], i.e.,

T (ω) = exp

(
− iN�1D

2

1

ω − ω0 + i�′/2

)
. (5)

The above transmission coefficient allows for a semianalytical
expression of the transmitted pulse intensity. The details are
fully developed in Ref. [30], where we investigate the
transport of broadband square photon pulses in waveguide
QED, and the calculation is inspired by Ref. [19]. Here we
adapt these results to Gaussian input pulses. After performing
the integral in frequency, the output intensity can be written

as series of Bessel functions, i.e.,

Id (t )

I0
= e−�′t

∣∣∣∣∣
∞∑

m=−∞
Am

(√
t

OD�′

)m

Jm(
√

OD�′t )

∣∣∣∣∣
2

, (6)

where the expressions for the coefficients Am—which depend
on the pulse parameters—are given in Appendix A.

As can be seen from this expression, the optical depth
determines the timescale of the dynamics. Moreover, while
our Eq. (2) refers to an ordered array, the convergence of the
transmission coefficient to that of a continuous medium for
large-atom number indicates that position disorder is irrele-
vant for our results. This last point is in contrast with what
occurs for reflection, which is only observable in periodic
arrays [43–45].

IV. EXPERIMENTAL ANALYSIS

We excite the array of atoms with a Gaussian pulse, de-
picted in gray in Fig. 2. The number of incident photons
per pulse is kept around 0.4. The transmitted pulse, shown
in Fig. 2, has three peaks and two valleys, from DBs. The
first valley is reproduced by the model even in the limit of
a single electromagnetic mode coupled to a single collective
atomic mode, which is equivalent to only considering the
nanofiber electromagnetic mode and a single atom. It shows
the interference between the two with a significant decrease in
the transmission.

The second valley requires the many-atom theory (green
line) with its many modes. This theory also captures the
relatively fast decay on the way to the second valley. To
produce the theory curve, we solve the Heisenberg-Langevin
equations for the atomic coherences for the input drive (which
we extract from the experiment). We then compute the trans-
mitted field via input-output equations.

The amplitude of the third peak is correctly predicted
by the many-atom theory, but it emerges later in the cal-
culation than in the measurement. An exploration of the
numerical simulations shows that this discrepancy is due to
line broadening. To account for this disparity, we model the
complex transmission coefficient of the asymmetrically and
inhomogeneously broadened atomic medium as the product
of frequency-displaced transmission coefficients of the form
of Eq. (5), each with a different number of atoms (see Ap-
pendix B for details). The number of atoms corresponding
to each shifted transmission is sampled from a log-normal
distribution [46], characteristic of random processes bounded
on one side, such as position-dependent, positive-only light
shifts. The model reproduces to a good approximation the
measured transmission spectrum shown in the inset of Fig. 2.
Considering the modeled transmission coefficient, we produce
the purple line from the square of Eq. (1), in excellent agree-
ment with the pulse measurements.

Figure 3 shows the location of the first zero from the turn-
on of the excitation pulse and the slope of the second fall from
a series of pulse transmission measurements, as a function of
the optical depth. Two sets of data, corresponding to pulses
of 10 ns (blue circle) and 13 ns FWHM (red square), show
the delay of the first zero as a function of OD. The theory
curves (red, blue), as obtained from the many-atom theory,
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FIG. 3. Left: Evolution of the first zero with on-resonance exci-
tation (valley) of the transmission as a function of the OD for two
different pulse widths. Blue circles correspond to a FWHM of 10 ns
and the red squares for a FWHM of 13 ns. The corresponding blue
and red continuous lines indicate the prediction of the full theory.
Right: Extracted decay rate (green) from the fall of the second peak
when the input is a 10 ns pulse (bars), 13 ns (x’s). The dashed green
line is 1+OD/2, the expected value from the theory. The error bars
are the same for the two sets of data, but only the horizontal or the
vertical are plotted for clarity.

agree with the experimental data. The curves are produced
with a single adjustable parameter, i.e., the offset from the
peak of the input pulse (1.1 ns optimizes the fit). As expected,
the time of the first zero decreases with increasing optical
depth. The dependence on the pulse width becomes less rel-
evant as the optical depth increases, in agreement with our
theoretical model (which predicts that the first zero occurs
at a time �′τzero � 4/OD after the input pulse center in the
large OD limit). However, while the theory captures well the
scaling with the optical depth, the approximation that yields a
simple expression is only in qualitative (but not quantitative)
agreement, as the OD in the experiment is not large enough.

The right axis of Fig. 3 shows an effective decay rate
obtained from a fit of the second fall on the transmitted pulses
of 10 ns (bars) and 13 ns (x’s). Both data sets have statistical
error bars and only one of them is plotted for clarity. The
extracted numbers fall in the same range. The rate value seems
to only be dependent on the OD. Once the absorption is
large enough, the decay rate grows almost linearly with the
increased OD. An enhanced decay rate arises because the su-
perradiant modes in Eq. (4) dominate the signal at early times.
By assuming that the decay rate is determined by these modes,
we obtain γ̃ ∼ �′(1 + OD/2), which is consistent with the
experimental results. The decay rate changes at later times, but
experimental noise prevents us from accessing this regime.

V. DISCUSSION

We measured the emergence of oscillations in the temporal
behavior of a pulse in the single-photon limit as it prop-
agates in a waveguide through a resonant atomic medium.
We find that the position of the first valley and the first two
peaks is quite insensitive to the absorption details near res-
onance. This is because the transmittance is practically zero

near resonance. On the other hand, the tails of the spectral
distribution contribute much more to the second valley and
third peak. Although good from a statistical point of view, the
fits to the measured absorption spectrum present deviations
in the tails. Combinations of the many magnetic sublevels,
the position-dependent light shifts induced by the trap, the
remaining heating of the trapped atoms, and the nanofiber
torsional modes [47] can contribute to this issue.

In the waveguide QED regime amenable to nanofiber ex-
periments, a quantum description for the atomic response is
not needed to quantitatively understand DBs. Although our
approach comes from a microscopic description [30], in the
many-atom limit, the results agree perfectly with those pre-
dicted for a continuous medium. This result shows that a
classical description based on the linear transmission coef-
ficient (for a continuous medium) and input electric field is
sufficient in many waveguide QED transmittance measure-
ments [31–33], in particular when both the saturation and the
ratio �1D/�′ are low.

Single photons interacting with quantum emitters are the
basis of several quantum information processing protocols
[1–4]. Realistic implementations of such protocols can suffer
from misshaping of the photon pulse shape, an unintended
result of the photon-emitter interaction. Our results present
tools to identify and address this platform-dependent potential
source of error. Furthermore, some applications can benefit
from amplitude and phase modulation of the pulse. These
modulations can be achieved by controlling the spectral prop-
erties of the near-resonant media, as the presented theory and
experiments show.

VI. CONCLUSION

We experimentally and theoretically study the problem
of pulse propagation through a resonant media, showing the
emergence of dynamical beats in waveguide QED. We focus
on the limit of pulses with temporal widths below the atomic
lifetime 1/�′ and below the atomic saturation intensity. In or-
der to understand the most relevant features in the emergence
of dynamical beats, we propose a theoretical effective model
based on macroscopic electrodynamics, which can be mi-
croscopically derived from a multiple-scattering input-output
theory. Our results provide insights into the key factors deter-
mining the emergence of dynamical beats, a relevant effect for
light-based communication and information processing pro-
tocols that relies on sending pulses to interconnect resonant
samples or quantum emitters.
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APPENDIX A: THEORY

1. Many-atom theory

An ensemble of N two-level atoms coupled to a waveguide
and driven by a weak pulse with an arbitrary temporal shape
�(t ) is described by the effective Hamiltonian H = H1D +
H′ + Hdrive, where

H1D = −i
h̄�1D

2

N∑
i, j=1

eikd|i− j|σ̂ i
egσ̂

j
ge, (A1a)

H′ = −i
h̄�′

2

N∑
i=1

σ̂ i
ee, (A1b)

Hdrive = −h̄	

N∑
i=1

σ̂ i
ee − h̄�(t )

N∑
i=1

(
eikzi σ̂ i

eg + H.c.
)
. (A1c)

Here, k, 	, and {zi} are, respectively, the light wave vector,
the detuning between the central frequency of the drive and
the atomic resonance, and the set of atomic positions along the
waveguide. The expectation value of the atomic coherences,
〈σ̂ n

ge〉 ≡ σ n
ge, evolves according to

σ̇ n
ge = i

(
	 + i

�′

2

)
σ n

ge + i�(t )eikzn − �1D

2

N∑
m=1

eik|zn−zm|σ m
ge.

(A2)
The expectation value for (the positive-frequency compo-

nent of) the electric field at a point to the left of the ensemble
is a sum of the input field and the field generated by the atoms,

E+(z, t ) = �(t )eikz + i
�1D

2

N∑
i=1

eik|z−zi |σ i
ge(t ). (A3)

The results presented in Fig. 2 are calculated by numeri-
cally solving Eq. (A2) using the amplitude of the experimental
pulse as �(t ), for 40 disordered atoms with OD = 11.6 and
�1D/�′ = OD/2N . As discussed in the main text, the output
field is determined solely by N�1D in the large-atom limit, so
the specific number of atoms and its configuration are irrele-
vant as long as N 
 1. Noise has been added to the final result
(see Appendix C for details) to make the experimental signal
and the simulation agree at long times (due to the logarithmic
scale, this is a small correction at short times).

2. Transmitted intensity in terms of collective modes

The system of equations in Eq. (A2) is simpler if we trans-
form to the basis that diagonalizes the atom-atom interactions.
In this representation, Eq. (A2) becomes

˙̃σ ξ
ge + (�′/2 + iλξ − i	)σ̃ ξ

ge = i�̃ξ , (A4)

where {λξ } are the eigenvalues of the Hamiltonian of Eq. (A1)
in the single-excitation sector. The real [Jξ = Re(λξ )] and
imaginary [�ξ = −2Im(λξ )] parts of these eigenvalues en-
code the frequency shift and collective decay rate of each
of the modes. In the above equation, σ̃ ξ

ge = ∑N
i=1 vi

ξ σ
i
ge, and

�̃ξ = ∑N
i=1 vi

ξ�
i
ge are linear combinations of the coherences

and the field at the atomic positions, projected onto the
eigenvectors vξ . The dynamics is thus that of N independent
dipoles.

If atoms are in the mirror configuration, there is a single
bright mode with eigenvalue λbright = −iN�1D/2. The above
equation becomes

ṗ + (�′/2 + OD�′/4 − i	)p = i�bright, (A5)

where we have defined p ≡ σ̃
bright
eg . On resonance (with 	 =

0), this equation is equivalent to the low-intensity and bad-
cavity limits in the cavity QED work of Carmichael et al. [42].

All collective modes contribute to the output field if atoms
are not in the mirror configuration. To calculate the output
field, we use the transmission coefficient [40]

T (ω) = 1 − i�1D

2

N∑
ξ=1

ηξ

ω − ω0 + i�′/2 − λξ

, (A6)

which is obtained by solving Eq. (A2) in the steady state and
plugging the solution for the coherences in Eq. (A3). Here,
{ηξ } are coefficients given in terms of the eigenvectors {vξ } as

ηξ =
N∑

n=1

N∑
m=1

vξ,nvξ,me−ikd (n−m). (A7)

We model the input pulse as a Gaussian with central
frequency ωp and standard deviation σ = FWHM/2

√
2 ln 2.

Plugging Eq. (A6) into Eq. (1) yields

Id (t )

I0
=

∣∣∣∣E0(t )e−i	t − �1D

4

×
N∑

ξ=1

ηξ e−(�′+�ξ )t/2e−iJξ t e− 1
2 (	+i�′/2−λξ )2σ 2

× erfc

(−i(	 + i�′/2 − λξ )σ 2 − t√
2σ

)∣∣∣∣
2

, (A8)

where 	 ≡ ωp − ω0. The coefficients aξ and bξ of Eq. (4) thus
read

aξ = ηξ e− 1
2 (	+i�′/2−λξ )2σ 2

, (A9a)

bξ = −i(	 + i�′/2 − λξ )σ 2. (A9b)

The coefficients ηξ weight the contributions of different
modes. The most superradiant modes have a larger coefficient
and contribute more to the final signal.

For late times, we can approximate erfc(·) ∼ 2 for all the
terms. Furthermore, we neglect the input field to determine the
slope of the second peak and approximate the scattered field
by the term corresponding to the first few most superradiant
modes,

Id (t )

I0
∝

∣∣∣∣
ξcut∑
ξ=1

η̃ξ e−(�′+�ξ )t/2e−iJξ t

∣∣∣∣
2

. (A10)
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In the above equation, ξcut ∈ N is a mode cutoff, and η̃ξ is
a prefactor absorbing all the constants. The first few super-
radiant modes have a scaling �ξ ∼ N�1D. We approximate
�ξ ∼ N�1D and write

Id (t )

I0
∝ e−(�′+N�1D )t

∣∣∣∣
ξcut∑
ξ=1

η̃ξ e−	ξ t/2e−iJξ t

∣∣∣∣
2

. (A11)

Here, 	ξ is a correction that arises from the approximation
of �ξ as N�1D. Overall, Id (t ) ∝ I0e−(�′+N�1D )t F (t ), with F (t )

a function whose evolution timescale is much larger than
(�′ + N�1D)−1. The effective decay rate at the second max-
imum is then approximately �′ + N�1D = �′(1 + OD

2 ). Note
that this approximation becomes exact only for atoms in the
mirror configuration.

3. Transmitted intensity in the continuous limit

Here we provide the derivation of Eq. (6) in the main text.
Since N 
 1, TN (ω) is well approximated by Eq. (5) of the
main text [30]. Defining z ≡ ω − ωp, we can write the output
intensity from Eq. (1) as

Id (t )

I0
=

∣∣∣∣ 1

2π

∫ ∞

−∞
exp

(−iN�1D

2

1

z + 	 + i�′/2

)
exp

(
−1

2
σ 2z2

)
exp(−izt )dz

∣∣∣∣
2

. (A12)

Via the Bessel generating function,
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the output intensity can be expressed as the expansion given
in Eq. (6). The expansion coefficients take the form

Am = (−2i)m

2π

∫ ∞

−∞
dz

(
z + 	 + i

�′

2

)m

e− 1
2 σ 2z2

. (A14)

For m > 0, Am can be written in terms of a confluent
hypergeometric function of the second kind,

Am = (2)m−1
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(A15)
For m < 0,

Am = (−2i)m

2π

(−1)|m|−1

(|m| − 1)!
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α F (α, σ )

∣∣
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, (A16)

with

F (α, σ ) = −iπe− 1
2 σ 2α2

[
erf

(
i
ασ√

2

)
+ 1

]
. (A17)

APPENDIX B: ABSORPTION SPECTRUM

The optical dipole trap produces position-dependent light
shifts. The wavelengths are near almost magic, but the slight
difference from the magic condition produces a small residual
effect. Our knowledge of the polarization in situ is not perfect;
we do expect some residual longitudinal circular polarization,
which creates an artificial magnetic field causing shifts. We
do not optically pump all the atoms into a single Zeeman
sublevel to increase the control of this effect, and it is probably
the cause of broadening. The nonharmonicity of the trap and
the fact that the atoms are not at the trap ground state also
contribute to the asymmetry. The transmission coefficient,

given by the Beer-Lambert law, of the actual atomic sample
departs from the exponential of a Lorentzian distribution, as in
Eq. (3) of the main text. As a result, the absorption spectrum
(i.e., the transmittance) can often look broadened and even
asymmetric.

The details of the position distribution of the atoms and
position-dependent light shifts are not directly measurable
and difficult to estimate. We have the measured transmit-
tance of the intensity, but we need that of the field with its
real and imaginary components. We use a phenomenological
approach to describe the absorption coefficient of the total
atomic sample, T (ω), by considering it as an ensemble of
smaller samples with optical density ODi that is frequency
shifted by ωi with transmission coefficient Ti(ω,ωi, ODi ).
This is T (ω) = ∏

i Ti(ω,ωi, ODi ). All the shifts are randomly
distributed, as we assume that the position distribution is ran-
dom within the traps but bounded to a maximum shift on one
side of the spectrum, a process characterized by log-normal
distributions.

Figure 4 presents an example of a few light-shifted trans-
mission spectra sampled over a log-normal distribution that
produce an asymmetrically broadened transmission spectrum

FIG. 4. Comparison of the measured transmittance (solid black
in logarithmic scale) with the modeled one (dotted blue). The model
consists of a sum of frequency-shifted Lorentzian spectra (dashed
gray) log-normally distributed.
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close to the measured one. In this case, the modeled trans-
mission spectrum was adjusted to overlap with the measured
spectrum, while in the main text, it was adjusted to better pre-
dict the transmitted pulse. A different number of subsamples,
shifts, and shapes of the log-normal distribution produces
similar pulse intensity outputs as long as the transmittance
roughly overlaps with the measured one. These results sug-
gest that an approximate model is enough to reproduce the
transmitted pulse shape, even when the actual absorption co-
efficient is unknown.

APPENDIX C: DATA PROCESSING

The pulse transmission raw data obtained by photon count-
ing on the SPCM has a background with no atoms of 1.5 ×
10−3 of the peak height. The equivalent background with
atoms is closer to 0.5 × 10−3. We have adjusted the back-
ground (adding an average of 10 counts to every bin with its
appropriate noise) in Fig. 3 to make the traces converge to
the same long-term average value. The theoretical predictions
have also had the background adjusted. The results of Fig. 3
are independent of this correction.
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